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Goal of the talk

Theorem (Main theorem)

A CBER (X ,E ) is properly wallable if and only if it is treeable.

Theorem

If a CBER (X ,E ) admits a locally finite graphing whose components are

quasi-trees then it is treeable.
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CBERs

Definition (CBER)

Let X be a Polish space. A countable Borel equivalence relation (CBER)

E on X is a Borel subset of X 2 such that each E -class is countable.

Definition (graphing)

A Borel G ⇢ E ⇢ X
2 is a graphing of E if the connected components of G

are precisely the equivalence classes of E .
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Treeability

Definition

A CBER E is treeable if it admits a graphing that is a forest.

Definition (quasi-treeable)

A CBER E is quasi-treeable if it admits a locally finite graphing each of
whose component is quasi-isometric (on its own) to a tree.

Example.
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Motivation

Theorem

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a

tree is virtually free.

Question

Are quasi-treeable CBERs treeable?

(October 2023, McGill University) 7 / 27



Motivation

Theorem

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a

tree is virtually free.

Question

Are quasi-treeable CBERs treeable?

(October 2023, McGill University) 7 / 27



Motivation

Theorem

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a

tree is virtually free.

Question

Are quasi-treeable CBERs treeable?

(October 2023, McGill University) 7 / 27



Motivation

Theorem

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a

tree is virtually free.

Question

Are quasi-treeable CBERs treeable?

(October 2023, McGill University) 7 / 27



Game plan

We have a plan.
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median graphs Duality
w/ finite -> properly wallable -> quasi-trees are
hyperplanes > treeable treeable
=> treeable
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Median graphs

Definition (Median graph)

(X ,G ) is a median graph if it is connected and for any x , y , z 2 X ,
[x , y ] \ [y , z ] \ [x , z ] = {hx , y , zi} is a singleton.

Examples.
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Some definitions

Let (X ,G ) be a median graph.

Definition

A half-space H ⇢ X is a convex and co-convex subset. Let H be the
collection of such sets.

Definition

For H 2 H, the directed inner edge boundary @ieH ⇢ G is a hyperplane.

Definition

For x , y 2 X conex(y) = {z 2 X : d(x , z) > d(y , z)}.

Definition

A set X with a collection H ⇢ 2X is a wallspace if for any x , y 2 X there
are only finitely many H 2 H separating x and y .
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Cones

Lemma

Each non-trivial H 2 H is equal to conex(y) for any (x , y) 2 @ieH.

Lemma

Squares generate hyperplanes.
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Nested and successor

Definition

Let H,K be half-spaces. Then H is

1 nested with K if H is comparable with one of K ,¬K under inclusion,

2 a successor of K if K ( H and there is no half-space strictly in
between.

Note: This happens if and only if @vH \ @vK 6= ;, or if
{H,¬H} = {K ,¬K}.
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Stone-duality theorem

Theorem (Isbell, Werner)

There is a contravariant equivalence of categories between

{(X ,G ) median, median homomorphisms} !

{pocsets
⇤(P ,,¬, 0), continuous homomorphisms}.

Definition

An orientation on H is an upward-closed subset U ⇢ H containing exactly
one of H,¬H for each H 2 H.
Let U(H) denote the collection of orientations on H.
Let Uo(H) ⇢ 2H denote the collection of clopen orientations on H.
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From median graph to wallspace
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median graph Wallspace

(X , G) -> Hox(X) = 2Y

(X . G) = 20 (Forx(X)) is an isomorphism

x 1 Y = <He 71(X) : x = H)

surjective :
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From wallspace to median graph

(October 2023, McGill University) 17 / 27

wall space median graph
I <2(71) = 27

and 11 -> Hex (21°(X)) is an isomorphism .

H - \UE20(X) /HE Us

surjective :
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Properly wallable

Definition

A set X with a collection H ⇢ 2X is a wallspace if for any x , y 2 X there
are only finitely many H 2 H separating x and y (i.e. finitely separating).
(H is a walling of X .)

Definition

A wallspace is proper if it satisfies

1 each H-block is finite (i.e., for any x , there are finitely many y with
8H 2 H, x 2 H () y 2 H,

2 for any H 2 H, there are only finitely many K 2 H non-nested with
H,

3 for any H 2 H there are only finitely many successors H ( K 2 H.

Note: one can define a Borel (proper) walling.
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Examples of proper wallings

Lemma

If H is a proper walling, then U
o(H) has finite hyperplanes.

Examples

Locally finite trees are properly wallable.
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Quasi-isometry and properly wallable

Theorem

A CBER (X ,E ) is properly wallable if and only if it is treeable.

Proof.
Let (Y ,H) be a countable proper wallspace. Consider the median graph
U
o(H) =: (X ,G ) with finite hyperplanes, we construct a subtree T ⇢ G .

1 We countably colour H(X ) = tnHn, such that H,¬H receive the
same colour, and non-nested half-spaces get di↵erent colours.

2 Construct the equivalence relations Kn as for x , y 2 X ,
xKny () (8k > n, 8H 2 Hk , x 2 H () y 2 H). Then
[nKn = X

2.

3 Kn treed, we tree Kn+1. If A,B are Kn-blocks that are in the same
Kn+1-block, pick an edge.

(Y ,H) is Borel bireducible with (X ,G ) by y 7! ŷ = {}.
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In case drawing works
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Quasi-isometry and properly wallable

Theorem

If f : (X ,G ) ! (Y ,T ) is a quasi-isometry, and (Y ,T ) is properly wallable

with Hdiam(@R) for R < 1, then (Y ,T ) is properly wallable.

An example (lies to fool you).

(October 2023, McGill University) 24 / 27
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Proof of second theorem

Theorem

If a CBER (X ,E ) admits a locally finite graphing whose components are

quasi-trees then it is treeable.

Proof.

Locally finite trees are properly wallable by diam(@v )  1.
Quasi-trees are quasi-isometric to trees.
Thus, quasi-trees are properly wallable.
Thus, quasi-trees are treeable.
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Summary

Add the summary.
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Here it is .

median graphs Duality Clies)
w/ finite -> properly wallable -> quasi-trees are
hyperplanes > treeable treeable
=> treeable



Last slide

The end.
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