Quasi-treeable CBERs are treeable via median graphs

Ran Tao

Carnegie Mellon University

Joint with Ruiyuan Chen (University of Michigan), Antoine Poulin (McGill) and Anush Tserunyan (McGill)

Quasi-treeable CBERs are treeable via median graphs

Ran Tao

Carnegie Mellon University

Joint with Ruiyuan Chen (University of Michigan), Antoine Poulin (McGill) and Anush Tserunyan (McGill)

Theorem (Main theorem)

A CBER (X, E) is properly wallable if and only if it is treeable.

э

イロト イポト イヨト イヨト

Theorem (Main theorem)

A CBER (X, E) is properly wallable if and only if it is treeable.

Theorem

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

イロト イポト イヨト イヨト

Introduction

2 Median graphs

3 Stone-duality

- 4 Proof of main theorem
- 5 Quasi-trees are treeable

∃ ► < ∃ ►

Introduction

- 2 Median graphs
- 3 Stone-duality
- Proof of main theorem
- 5 Quasi-trees are treeable

ロト 4 母 ト 4 吉 ト 4 吉 - シック

Definition (CBER)

Let X be a Polish space. A countable Borel equivalence relation (CBER) E on X is a Borel subset of X^2 such that each E-class is countable.

Definition (CBER)

Let X be a Polish space. A countable Borel equivalence relation (CBER) E on X is a Borel subset of X^2 such that each E-class is countable.

Definition (graphing)

A Borel $G \subset E \subset X^2$ is a graphing of E if the connected components of G are precisely the equivalence classes of E.

A CBER *E* is *treeable* if it admits a graphing that is a forest.

æ

《曰》《卽》《臣》《臣》

A CBER E is *treeable* if it admits a graphing that is a forest.

Definition (quasi-treeable)

A CBER *E* is *quasi-treeable* if it admits a **locally finite** graphing each of whose component is quasi-isometric (on its own) to a tree.

(日) (四) (日) (日) (日)

A CBER E is *treeable* if it admits a graphing that is a forest.

Definition (quasi-treeable)

A CBER *E* is *quasi-treeable* if it admits a **locally finite** graphing each of whose component is quasi-isometric (on its own) to a tree.

Example.

The orbit equivalence relation of a free action of a free group is treeable.

(日) (四) (日) (日) (日)

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a tree is virtually free.

The orbit equivalence relation of a free action of a free group is treeable.

Theorem (Jackson-Kechris-Louveau, 2002)

Free actions of virtually free groups are treeable.

Theorem (Ghys-de la Harpe, 1990)

A finitely generated group which has a Cayley graph quasi-isometric to a tree is virtually free.

Question

Are quasi-treeable CBERs treeable?

Game plan

We have a plan.

æ

《曰》《卽》《臣》《臣》

Introduction

2 Median graphs

3 Stone-duality

Proof of main theorem

5 Quasi-trees are treeable

(October 2023, McGill University)

Definition (Median graph)

(X, G) is a median graph if it is connected and for any $x, y, z \in X$, $[x, y] \cap [y, z] \cap [x, z] = \{\langle x, y, z \rangle\}$ is a singleton.

Examples.

Let (X, G) be a median graph.

Definition

A half-space $H \subset X$ is a convex and co-convex subset. Let \mathcal{H} be the collection of such sets.

Let (X, G) be a median graph.

Definition

A half-space $H \subset X$ is a convex and co-convex subset. Let \mathcal{H} be the collection of such sets.

Definition

For $H \in \mathcal{H}$, the directed inner edge boundary $\partial_{ie}H \subset G$ is a hyperplane.

Let (X, G) be a median graph.

Definition

A half-space $H \subset X$ is a convex and co-convex subset. Let \mathcal{H} be the collection of such sets.

Definition

For $H \in \mathcal{H}$, the directed inner edge boundary $\partial_{ie}H \subset G$ is a hyperplane.

Definition

For $x, y \in X$ cone_x $(y) = \{z \in X : d(x, z) > d(y, z)\} = \{z \in (x - y - z)\}$

11/27

Let (X, G) be a median graph.

Definition

A half-space $H \subset X$ is a convex and co-convex subset. Let \mathcal{H} be the collection of such sets.

Definition

For $H \in \mathcal{H}$, the directed inner edge boundary $\partial_{ie}H \subset G$ is a hyperplane.

Definition

For
$$x, y \in X$$
 cone_x $(y) = \{z \in X : d(x, z) > d(y, z)\}$.= $\{z \in (x-y-z)\}$

 $(x,y) \in G$

Definition

A set X with a collection $\mathcal{H} \subset 2^X$ is a *wallspace* if for any $x, y \in X$ there are only finitely many $H \in \mathcal{H}$ separating x and y.

Lemma

Each non-trivial $H \in \mathcal{H}$ is equal to $cone_x(y)$ for any $(x, y) \in \partial_{ie}H$.

æ

《曰》《卽》《臣》《臣》

Lemma

Each non-trivial $H \in \mathcal{H}$ is equal to $cone_x(y)$ for any $(x, y) \in \partial_{ie}H$.

Lemma

Squares generate hyperplanes.

Nested and successor

Definition

Let H, K be half-spaces. Then H is

- **(**) *nested* with K if H is comparable with one of $K, \neg K$ under inclusion,
- ② a successor of K if K ⊊ H and there is no half-space strictly in between.

Nested and successor

Definition

Let H, K be half-spaces. Then H is

- **(**) *nested* with K if H is comparable with one of $K, \neg K$ under inclusion,
- **2** a *successor* of K if $K \subsetneq H$ and there is no half-space strictly in between.

Note: This happens if and only if $\partial_{v}H \cap \partial_{v}K \neq \emptyset$, or if $\{H, \neg H\} = \{K, \neg K\}.$

Introduction

2 Median graphs

3 Stone-duality

- Proof of main theorem
- 5 Quasi-trees are treeable

(October 2023, McGill University)

3 1 4 3 1

Theorem (Isbell, Werner)

There is a contravariant equivalence of categories between $\{(X, G) \text{ median, median homomorphisms}\} \rightarrow \{pocsets^*(P, \leq, \neg, 0), continuous homomorphisms}\}.$

Theorem (Isbell, Werner)

There is a contravariant equivalence of categories between $\{(X, G) \text{ median, median homomorphisms}\} \rightarrow \{\text{pocsets}^*(P, \leq, \neg, 0), \text{continuous homomorphisms}\}.$

Definition

An orientation on \mathcal{H} is an upward-closed subset $U \subset \mathcal{H}$ containing exactly one of $H, \neg H$ for each $H \in \mathcal{H}$. Let $\mathcal{U}(\mathcal{H})$ denote the collection of orientations on \mathcal{H} .

Let $\mathcal{U}^{o}(\mathcal{H}) \subset 2^{\mathcal{H}}$ denote the collection of clopen orientations on \mathcal{H} .

From median graph to wallspace

▲ ศ 🛛 ト ▲ 三 ト

From wallspace to median graph

and $\mathcal{H} \longrightarrow \mathcal{H}_{cv\times}(\mathcal{U}^{\circ}(X))$ is an isomorphism. $\mathcal{H} \longmapsto \{U \in \mathcal{U}^{\circ}(X) \mid H \in U\}$

surjective :

1 Introduction

2 Median graphs

3 Stone-duality

4 Proof of main theorem

5 Quasi-trees are treeable

3 1 4 3 1

A set X with a collection $\mathcal{H} \subset 2^X$ is a *wallspace* if for any $x, y \in X$ there are only finitely many $H \in \mathcal{H}$ separating x and y (i.e. *finitely separating*). (\mathcal{H} is a *walling* of X.)

A set X with a collection $\mathcal{H} \subset 2^X$ is a *wallspace* if for any $x, y \in X$ there are only finitely many $H \in \mathcal{H}$ separating x and y (i.e. *finitely separating*). (\mathcal{H} is a *walling* of X.)

Definition

A wallspace is *proper* if it satisfies

- each \mathcal{H} -block is finite (i.e., for any x, there are finitely many y with $\forall H \in \mathcal{H}, x \in H \iff y \in H$,
- ② for any *H* ∈ \mathcal{H} , there are only finitely many *K* ∈ \mathcal{H} non-nested with *H*,
- **③** for any $H \in \mathcal{H}$ there are only finitely many successors $H \subsetneq K \in \mathcal{H}$.

Note: one can define a Borel (proper) walling.

Lemma

If \mathcal{H} is a proper walling, then $\mathcal{U}^{o}(\mathcal{H})$ has finite hyperplanes.

イロト イヨト イヨト イヨト

Lemma

If \mathcal{H} is a proper walling, then $\mathcal{U}^{o}(\mathcal{H})$ has finite hyperplanes.

Examples

Locally finite trees are properly wallable.

Quasi-isometry and properly wallable

Theorem

A CBER (X, E) is properly wallable if and only if it is treeable.

(日) (四) (日) (日) (日)

A CBER (X, E) is properly wallable if and only if it is treeable.

Proof.

Let (Y, \mathcal{H}) be a countable proper wallspace. Consider the median graph $\mathcal{U}^{o}(\mathcal{H}) =: (X, G)$ with finite hyperplanes, we construct a subtree $T \subset G$.

A CBER (X, E) is properly wallable if and only if it is treeable.

Proof.

Let (Y, \mathcal{H}) be a countable proper wallspace. Consider the median graph $\mathcal{U}^{o}(\mathcal{H}) =: (X, G)$ with finite hyperplanes, we construct a subtree $T \subset G$.

• We countably colour $\mathcal{H}(X) = \bigsqcup_n \mathcal{H}_n$, such that $H, \neg H$ receive the same colour, and non-nested half-spaces get different colours.

A CBER (X, E) is properly wallable if and only if it is treeable.

Proof.

Let (Y, \mathcal{H}) be a countable proper wallspace. Consider the median graph $\mathcal{U}^{o}(\mathcal{H}) =: (X, G)$ with finite hyperplanes, we construct a subtree $T \subset G$.

- We countably colour $\mathcal{H}(X) = \bigsqcup_n \mathcal{H}_n$, such that $H, \neg H$ receive the same colour, and non-nested half-spaces get different colours.
- ② Construct the equivalence relations K_n as for $x, y \in X$, $xK_ny \iff (\forall k > n, \forall H \in \mathcal{H}_k, x \in H \iff y \in H)$. Then $\cup_n K_n = X^2$.

(4回) 4回) 4回)

A CBER (X, E) is properly wallable if and only if it is treeable.

Proof.

Let (Y, \mathcal{H}) be a countable proper wallspace. Consider the median graph $\mathcal{U}^{\circ}(\mathcal{H}) =: (X, G)$ with finite hyperplanes, we construct a subtree $T \subset G$.

- We countably colour $\mathcal{H}(X) = \bigsqcup_n \mathcal{H}_n$, such that $H, \neg H$ receive the same colour, and non-nested half-spaces get different colours.
- ② Construct the equivalence relations K_n as for $x, y \in X$, $xK_ny \iff (\forall k > n, \forall H \in \mathcal{H}_k, x \in H \iff y \in H)$. Then $\cup_n K_n = X^2$.
- K_n treed, we tree K_{n+1} . If A, B are K_n -blocks that are in the same K_{n+1} -block, pick an edge. $H \mapsto \{ u \in u^{\circ}(H) \mid u \ni H \}$ (Y, \mathcal{H}) is Borel bireducible with (X, G) by $y \mapsto \hat{y} = \{ \}$.

In case drawing works

(October 2023, McGill University)

Introduction

- 2 Median graphs
- 3 Stone-duality
- Proof of main theorem
- 5 Quasi-trees are treeable

∃ ► < ∃ ►

If $f : (X, G) \to (Y, T)$ is a quasi-isometry, and (Y, T) is properly wallable with $\mathcal{H}_{diam(\partial \leq R)}$ for $R < \infty$, then (Y, T) is properly wallable.

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

Proof.

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

Proof.

Locally finite trees are properly wallable by $diam(\partial_{\nu}) \leq 1$.

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

Proof.

Locally finite trees are properly wallable by $diam(\partial_v) \leq 1$. Quasi-trees are quasi-isometric to trees.

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

Proof.

Locally finite trees are properly wallable by $diam(\partial_v) \leq 1$.

Quasi-trees are quasi-isometric to trees.

Thus, quasi-trees are properly wallable.

If a CBER (X, E) admits a locally finite graphing whose components are quasi-trees then it is treeable.

Proof.

Locally finite trees are properly wallable by $diam(\partial_v) \leq 1$.

Quasi-trees are quasi-isometric to trees.

Thus, quasi-trees are properly wallable.

Thus, quasi-trees are treeable.

Add the summary. Here it is,

æ

イロト イヨト イヨト イヨト

The end.

(October 2023, McGill University)

æ

メロト メタト メヨト メヨト